Python

Example of Multi-layer Perceptron Classifier in Python

Programmingempire

This article demonstrates an example of a Multi-layer Perceptron Classifier in Python. In general, we use the following steps for implementing a Multi-layer Perceptron classifier.

  1. To begin with, first, we import the necessary libraries of python.
  2. After that, create a list of attribute names in the dataset and use it in a call to the read_csv() function of the pandas library along with the name of the CSV file containing the dataset.
  3. To list the first five rows of the dataset, call the head() function.
  4. At this point, we divide the dataset into two parts. While the first part contains the first four columns that we assign in the variable a. Likewise, the second part contains only the last column that is the class label. Further, assign it to the variable b.
  5. Further, we call the train_test_split() function that further divides the dataset into training data and testing data with a testing data size of 25%.
  6. In the meantime, we normalize our dataset. In order to do that we call the StandardScaler() function. Basically, the StandardScaler() function subtracts the mean from a feature and scales it to the unit variance.
  7. Subsequently, we call the MLPClassifier() function with appropriate parameters indicating the hidden layer sizes, activation function, and the maximum number of iterations.
  8. In order to get the predicted values we call the predict() function on the testing data set.
  9. Finally, we call the functions confusion_matrix(), and the classification_report() in order to evaluate the performance of our classifier.

Example of Multi-layer Perceptron Classifier in Python with Three Hidden Layers

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

arr = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']
df = pd.read_csv("iris.csv", names=arr)
print(df.head())
a = df.iloc[:, 0:4]
b = df.select_dtypes(include=[object])
b = df.iloc[:,4:5]
training_a, testing_a, training_b, testing_b = train_test_split(a, b, test_size = 0.25)
myscaler = StandardScaler()
myscaler.fit(training_a)
training_a = myscaler.transform(training_a)
testing_a = myscaler.transform(testing_a)
m1 = MLPClassifier(hidden_layer_sizes=(12, 13, 14), activation='relu', solver='adam', max_iter=2500)
m1.fit(training_a, training_b.values.ravel())
predicted_values = m1.predict(testing_a)
print(confusion_matrix(testing_b,predicted_values))
print(classification_report(testing_b,predicted_values))

Output

MLPClassifier Example with Three Hidden Layers
MLPClassifier Example with Three Hidden Layers

Example of Multi-layer Perceptron Classifier in Python with Four Hidden Layers

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

arr = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']
df = pd.read_csv("iris.csv", names=arr)
print(df.head())
a = df.iloc[:, 0:4]
b = df.select_dtypes(include=[object])
b = df.iloc[:,4:5]
training_a, testing_a, training_b, testing_b = train_test_split(a, b, test_size = 0.25)
myscaler = StandardScaler()
myscaler.fit(training_a)
training_a = myscaler.transform(training_a)
testing_a = myscaler.transform(testing_a)
m1 = MLPClassifier(hidden_layer_sizes=(9, 12, 10, 15), activation='relu', solver='adam', max_iter=2000)
m1.fit(training_a, training_b.values.ravel())
predicted_values = m1.predict(testing_a)
print(confusion_matrix(testing_b,predicted_values))
print(classification_report(testing_b,predicted_values))

Output

MLPClassifier Example with Four Hidden Layers
MLPClassifier Example with Four Hidden Layers

Further Reading

Deep Learning Tutorial

Text Summarization Techniques

How to Implement Inheritance in Python

Find Prime Numbers in Given Range in Python

Running Instructions in an Interactive Interpreter in Python

Deep Learning Practice Exercise

Python Practice Exercise

Deep Learning Methods for Object Detection

Understanding YOLO Algorithm

What is Image Segmentation?

ImageNet and its Applications

Image Contrast Enhancement using Histogram Equalization

Transfer Learning and its Applications

Examples of OpenCV Library in Python

Examples of Tuples in Python

Python List Practice Exercise

Understanding Blockchain Concepts

Edge Detection Using OpenCV

Predicting with Time Series

Example of Multi-layer Perceptron Classifier in Python

Measuring Performance of Classification using Confusion Matrix

Artificial Neural Network (ANN) Model using Scikit-Learn

Popular Machine Learning Algorithms for Prediction

Long Short Term Memory – An Artificial Recurrent Neural Network Architecture

Python Project Ideas for Undergraduate Students

Creating Basic Charts using Plotly

Visualizing Regression Models with lmplot() and residplot() in Seaborn

Data Visualization with Pandas

A Brief Introduction of Pandas Library in Python

A Brief Tutorial on NumPy in Python

programmingempire

You may also like...