The following article shows an example of Creating Transformer Model Using PyTorch.
Implementation of Transformer Model Using PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super().__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self.generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return output
In this example, we define a TransformerModel
class that inherits from the nn.Module
class in PyTorch. The TransformerModel
takes in several parameters, such as ntoken
(the size of the vocabulary), ninp
(the dimensionality of the input embeddings), nhead
(the number of attention heads), nhid
(the dimensionality of the hidden layer), and nlayers
(the number of encoder layers in the Transformer model).
In the constructor of the class, we initialize the various components of the Transformer model, such as the encoder and decoder layers, the positional encoding layer, and the Transformer encoder layer. We also define a method generate_square_subsequent_mask
to create the mask used for masking out future positions in the self-attention mechanism.
In the forward
method, we first pass the input sequence through the encoder to obtain the input embeddings. We then pass the embeddings through the positional encoding layer and the Transformer encoder layer to obtain the output embeddings. Finally, we pass the output embeddings through the decoder layer to obtain the final output.
This is just a basic example, but you can modify this code to suit your specific use case. You can also experiment with different hyperparameters and architectures to improve the performance of your Transformer model.
Further Reading
How to Start Working with Flask API?
20 Project Ideas Using Flask API for College Students
Exclusive Project Ideas for Students Using PySyft
What is the Transformer Model of AI?
10 Points of Difference Between the Transformer Model and RNN
Exclusive Project Ideas Using Transformer Model for Students
Examples of OpenCV Library in Python
A Brief Introduction of Pandas Library in Python